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The BCS Ground State

0.1 Self-Consistent Gap Equation - Continued

Last time we derived the celebrated self-consistent gap equation:
Ap=-3> \/%Vk,z,
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and we examined the solution with A = 0. Now look for a non-trivial solution.

Put in the Cooper pairing potential as,
Vi, = {—V 1€kl &1 < hewe
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with V' a positive number. This creates an attractive pairing interaction within
a "skin" of thickness fuw. around the Fermi energy. It is a bit more democratic
now, not just pertaining to a chosen pair of electrons, but acting on all electrons
near the chemical potential.

With this, the self-consistent gap equation becomes,
Ay = Y S festricted AL where the sum is now restricted to those values
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of k and [ that give non-zero pairing interaction.

Since the right-hand side is independent of k, it must be that Ay = A; = A,
independent of k. This is a consequence of the simple proposed pairing interac-
tion. Hence we have
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Converting from a sum on [ to an integral on energy brings in the density of

states D(F) and allows us to solve for A in closed form:
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A= sinh(l/g(Ep)V)
Once again, if we take the "weak coupling" approximation D(Er)V << 1, this
yields, A ~ 2hw.e~ 1/ PEFV 4 result very similar to the Cooper result for 7.

In fact it will turn out that BCS predicts a universal value for the ratio A/kgT..

Going back to the u’s and v’s, we now have two equations and expressions
for everything inside them: v,% - ui = f%’;, and ui + v,% =1.
These can be solved uniquely for ui and v,%:
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These expressions give us the occupation probability for the Cooper pairs as a
function of k, or energy. See the plot on the Supplementary Information part of
the class web site. The Cooper pair occupation probability is very close to the
smeared Fermi function for single particle state occupation probability at T,
which is a surprising result, given that we are calculating a zero-temperature
property of the superconductor! In fact the superconductor makes an interest-
ing gambit: it promotes many electrons from states inside the filled Fermi sea
to un-occupied states outside specifically to "activate" the pairing interaction
and create an overall decrease of the energy of the superconductor relative to
the normal metal state.

0.2 Energetics of the Superconducting Ground State

Now that we have explicit expressions for the u’s and v’s, we can evaluate the
ground state expectation value of the Landau potential,
(Upes|H — pNop [V pes) =23, &pvi + >k Ve ukvkwvr.
Also recall the definition of the energy gap, now in terms of the u’s and v’s:
Ak = — Zl VkJulvl.
Putting in the expressions for the u’s and v’s yields,

2
(Ypes|H — ulNop [YBos)s = 2 g (fk — é—’;) — A?/V, for the superconducting
state, and
(Wpes| H — uNop [WBes) v = D pcr, 28k for the normal state at T = 0.

Taking the difference in expectation values and converting from sums to in-
tegrals on energy yields,
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sz. The term in (...) is the increase in kinetic energy, while the second term is
the change in potential energy. The superconductor pays a large energy cost to
"smear" the electron distribution (at T = 0!) and move electrons from states
inside the Fermi sea to un-occupied states outside. This allows the product
ug Vg to become non-zero around the chemical potential (as shown in the slide
in the Supplementary material) and create a negative pairing interaction and a
non-zero "energy gap" A.

The Condensation Energy of the superconducting state is thus:
Us(T = 0) = Un(T = 0) = —3 D(Ep)A*(0).
Note that in the BCS weak coupling approximation this energy gain is much
smaller than the kinetic energy investment, on the order of 10 %.

We can represent the condensation energy in terms of a thermodynamic



critical field H, as: 4 HZ?(0) = 1D(Ep)A%(0). This will be generalized to

non-zero temperature later.

0.3 Superconductivity as a Coherent State of Cooper Pairs

The pairing interaction is always present. In particular it is present above T,.
Why does it not make a contribution to the energy of a metal in the normal
state?

1) At T = 0 we saw that the ground state of a "normal metal" is to fill all states
in the Fermi sea such that the product ugvy = 0 for all k. This leads to zero
energy gap and no contribution to the energy from V; ;.

2) At T > 0 there is a smeared Fermi distribution, creating non-zero values
for ugvy around the Fermi energy. However, the complex nature of the u’s and
v’s plays a role. Write the energy gap as Ay = — ), Viug|v]€®t. In the su-
perconducting state the wavefunction is a coherent state in which each term in
this sum has the same phase ¢; = ¢, allowing the terms to add coherently and
produce a non-zero A. This phase ¢ is in fact the phase of the macroscopic quan-
tum wavefunction that describes the superconductor. In the normal state these
phases are random, leading to an incoherent sum and no A?/V contributions
to the energy.

0.4 Finite Temperature BCS

We now explore the properties of BCS theory at finite temperature. This will
lead to quasi-particle excitations out of the ground state. This calculation also
serves as an independent way to determine the ground state properties of the
BCS Hamiltonian, so you soon see some "old friends" from the previous calcu-
lation!

Start with the BCS pairing Hamiltonian:

H — uNop = Zk,g fkczgck,a + Zk,z Vk,zCKTka,¢6—5,¢Cz,T-

The kinetic energy term is nice - it is diagonal. The potential energy term
is quartic and involves 4 different states - it is not diagonal. We will now go
through a 2-step process to diagonalize this Hamiltonian, and in the process
create operators that destroy Cooper pairs (more precisely they prevent the
occupation of a particular Cooper pair) and create quasi-particle excitations.
These are the most elementary excitations out of the BCS ground state, and
will play a major role in the perturbation theory of the BCS Hamiltonian.

In the first step, break the quartic term into a product of two new operators.
Define by = (c_, ck,+), Where the expectation value is with the superconduct-
ing wavefunction. Because the BCS wavefunction is a coherent superposition
of systems with all possible numbers of Cooper pairs, this expectation value for
the Cooper pair destruction operator will be non-zero in general.

Likewise define the adjoint operator as b} = <cz¢cf,w>.



Now write the bare destruction operators from the quartic term as a "mean"
part (namely by) and a "fluctuating" part, namely everything else, as,
co e = b+ (e e —bi).
Substitute this and the adjoint version in to the Hamiltonian and ignore second
order "fluctuating" terms to arrive at the "BCS Model Hamiltonian":
HM_MNop = Zk,o fkczackﬁ—i—zkﬁl Vk,l C;Tctk,ibl + bzc—l,icl,ﬁ — b;bl} , where
the by will be determined self-consistently.
Now define a new quantity (remember that this is an independent calculation)
that will soon be interpreted as an "energy gap":
Ak = — Zl Vkal.
With this definition, the model Hamiltonian can be written as ,
Hy — ,LLNOP = Zk,a §kczack,o — Zk (C;:,Tctk,LAk + A;;c_k,ickﬁ — bZ_Ak)
Now the Hamiltonian is bi-linear in the c¢’s, so we can take the next step to
diagonalize the Hamiltonian.

In the second step we shall carry out the Bogoliubov-Valatin transformation
to a new set of operators that will create quasi-particle excitations. This trans-
formation will diagonalize the model Hamiltonian.
k= UEYRO + VR
Cirk@ = —VpYKo + Uk%jl
where the u’s and v’s are just parameters of this transformation (for the mo-
ment) with the constraint |ug|” + |vx|> = 1 to make the transformation unitary.

The inverse transformation is;
Yo = u,’gc;T — vjc_g,, and,
'7:1 = u,";ci'k,i + ViCk 1
One can see that the ’Y/;‘—o operator decreases momentum by k and spin by /2
with probability |uz|* + |vg|> = 1, using what we anticipate will be the interpre-
tation of |ug|® and |vg|*. Likewise, the operator 7, increases momentum by k
and spin by //2 with probability 1. As such, these operators create Fermionic
excitations which will come to be known as Bogoliubons or Quasi-Particles. In
fact, one can show,
Yo |¥Bes) =0, and Y41 | ¥ pes) = 0, showing that the BCS ground state wave-
function is the vacuum state for quasi-particles.

0.5 Meanwhile, Back at the Hamiltonian

With the substitution of the transformed operators, the model Hamiltonian
becomes,

Hyr— ppNop = Y, (nice terms involving diagonal operators) + (undesired cross
terms) (2§kukvk + AZU,% - Akuﬁ).



